Phase diagrams and excitations of anisotropic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> quantum magnets on the triangular lattice

نویسندگان

چکیده

The $S=1$ bilinear-biquadratic Heisenberg exchange model on the triangular lattice with a single-ion anisotropy has previously been shown to host number of exotic magnetic and nematic orders [Moreno-Cardoner $\textit{et al.}$, Phys. Rev. B $\textbf{90}$, 144409 (2014)], including an extensive region "supersolid" order. In this work, we amend by XXZ in interactions. Tuning limit exactly solvable generalized Ising-/Blume-Capel-type provides controlled access phases at finite transverse exchange. Notably, find additional macroscopically degenerate phase diagram study its fate under perturbation theory. We further map out diagrams as function parameter, ratio bilinear biquadratic interactions anisotropy, compute corrections total ordered moment various using systematically constructed linear flavor-wave also present spectra states, finding that lowest-energy band three-sublattice (i.e. $S^z=\pm1,0$) Ising/Blume-Capel stabilized strong anisotropies, is remarkably flat, opening up way flat-band engineering excitation via stabilizing non-trivial Ising-ordered ground states.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Temperature Phase Diagrams of Quantum Lattice

We use the low-temperature expansion and the extension of Pirogov-Sinai theory developed in [1], and the perturbation theory of [2] to describe the phase diagrams of two families of fermionic lattice systems at low-temperature: the balanced model and a variant of the t−J model.

متن کامل

Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum φ 4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magneti...

متن کامل

Phase diagrams of the S = 12 quantum antiferromagnetic XY model on the triangular lattice in magnetic fields

1 2 quantum antiferromagnetic XY model on the triangular lattice in magnetic fields Abstract We study the S = 1 2 quantum antiferromagnetic XY model on finite triangular lattices with N sites in both longitudinal and transverse magnetic fields. We calculate physical quantities in the ground state using a diagonalization for spins N ≤ 27, and those at finite temperatures using a quantum transfer...

متن کامل

Phase transitions in two-dimensional anisotropic quantum magnets

We consider quantumHeisenberg ferroand antiferromagnets on the square lattice with exchange anisotropy of easy-plane or easy-axis type. The thermodynamics and the critical behaviour of the models are studied by the pure-quantum self-consistent harmonic approximation, in order to evaluate the spin and anisotropy dependence of the critical temperatures. Results for thermodynamic quantities are re...

متن کامل

Magnetic-Field Induced Quantum Phase Transitions in Triangular-Lattice Antiferromagnets

Cs2CuBr4 and Ba3NiSb2O9 are magnetically described as quasi-two-dimensional triangular-lattice antiferromagnets with spin1 2 and 1, respectively. We show that both systems exhibit a magnetization plateau at one-third of the saturation magnetization Ms due to the interplay of spin frustration and quantum fluctuation. In Cs2CuBr4 that has a spatially anisotropic triangular lattice, successive mag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.106.195147